A DNA Damage-Induced, SOS-Independent Checkpoint Regulates Cell Division in Caulobacter crescentus
نویسندگان
چکیده
Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.
منابع مشابه
A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW.
Following DNA damage, cells typically delay cell cycle progression and inhibit cell division until their chromosomes have been repaired. The bacterial checkpoint systems responsible for these DNA damage responses are incompletely understood. Here, we show that Caulobacter crescentus responds to DNA damage by coordinately inducing an SOS regulon and inhibiting the master regulator CtrA. Included...
متن کاملRegulatory pathways controlling cell division after DNA damage in
All cells must coordinate DNA replication with cell division in order to faithfully propagate whole chromosomes to daughter cells. During episodes of DNA damage, cells often delay division until the lesions have been repaired and replication has completed. The paradigm for the bacterial response to DNA damage is the transcriptional induction of "SOS" genes, and many organisms encode an SOS-indu...
متن کاملInducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli
Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more tha...
متن کاملAn SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus
DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog...
متن کاملCharacterization of the SOS regulon of Caulobacter crescentus.
The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in th...
متن کامل